Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Curr Cardiol Rev ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38706368

RESUMEN

BACKGROUND: Cardiovascular diseases represent a significant global health burden, necessitating diverse approaches for effective management. Herbal interventions have gained attention as potential adjuncts or alternatives to conventional therapies due to their perceived safety and therapeutic potential. This structured abstract provides a comprehensive review of herbal interventions for the management of CVDs, summarising key findings, mechanisms of action, and clinical implications. OBJECTIVE: This systematic review aims to evaluate the impact of various herbal interventions employed for managing cardiovascular diseases. METHOD: We conducted an extensive literature search across electronic databases, including PubMed, Scopus, and Web of Science, from inception to 2022. Studies were included if they investigated the use of herbal remedies for preventing or treating CVDs. Data extraction and synthesis focused on botanical sources, active compounds, mechanisms of action, and clinical outcomes. RESULT: Numerous herbal interventions have demonstrated promising cardiovascular benefits. A number of medicinal herbs well identified to treat CVD are Moringaoleifera, Ginseng, Ginkgo biloba, Celosia argentea, Gongronematrifolium, Gynostemmapentaphyllum, Bombaxceiba, Gentianalutea, Allium sativum, Crataegusspp, Curcuma longa, Camellia sinensis, and Zingiberofficinale. Mechanistic insights reveal that herbal interventions often target multiple pathways involved in CVD pathogenesis. These mechanisms encompass anti-inflammatory, antioxidant, anti-thrombotic, anti-hypertensive, and lipid-lowering effects. Additionally, some herbs enhance endothelial function, promote nitric oxide production, and exert vasodilatory effects, contributing to improved cardiovascular health. Clinical studies have provided evidence of the efficacy of certain herbal interventions in reducing CVD risk factors and improving patient outcomes. However, more rigorous, large-scale clinical trials are needed to establish their long-term safety and effectiveness. It is crucial to consider potential herb-drug interactions and standardise dosages for reliable therapeutic outcomes. CONCLUSION: This comprehensive review highlights the potential of herbal interventions as valuable adjuncts or alternatives for managing cardiovascular diseases. Herbal remedies offer diverse mechanisms of action, targeting key CVD risk factors and pathways. While promising, their clinical utility warrants further investigation through well-designed trials to establish their safety and efficacy, paving the way for integrated approaches to cardiovascular disease management. Healthcare providers and patients should engage in informed discussions about the use of herbal interventions alongside conventional therapies in the context of CVD prevention and treatment.

2.
Am J Gastroenterol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38517084

RESUMEN

INTRODUCTION: Limited evidence exists on the optimal strategy to correct iron deficiency anemia after variceal bleeding (VB) in cirrhosis. This trial compared the efficacy and safety of intravenous ferric carboxymaltose (IV-FCM) with those of oral iron therapy in this cohort. METHODS: In this open-label, single-center, randomized controlled trial, eligible patients with hemoglobin <10 g/dL and iron deficiency (ferritin <100 ng/mL) after VB received either IV-FCM (1,500-2,000 mg) divided into 2 doses (n = 48) or oral carbonyl iron (100 mg elemental iron/day) (n = 44) for 3 months. The primary outcome was change in hemoglobin at 3 months. Secondary outcomes included improvement in anemia (last hemoglobin >12 g/dL), normalization of iron stores (ferritin >100 ng/mL), liver-related adverse events, adverse drug reactions, and changes in quality of life (CLDQOL questionnaire). RESULTS: Baseline characteristics, including median Child-Turcotte-Pugh score 7 (interquartile range [IQR] 6-9), Model for End-Stage Liver Disease score 12 (IQR 10-17), blood hemoglobin (8.25 ± 1.06 g/dL), and ferritin (30.00 ng/mL [15.00-66.50]), were comparable in both arms. The median increase in hemoglobin at 3 months in the IV and oral arms was 3.65 g/dL (IQR 2.55-5.25) and 1.10 g/dL (IQR 0.05-2.90 g/dL) ( P < 0.001), respectively. Iron stores normalized in 84.6% and 21% of the IV and oral arms, respectively ( P < 0.001). Anemia improved in 50% and 21.9% in the IV and oral arms, respectively ( P < 0.009). Patients in the IV arm showed a significant improvement in all domains of CLDQOL. Liver-related adverse events were comparable in both arms. Transient mild/moderate hypophosphatemia developed in 43% of patients receiving IV-FCM. DISCUSSION: Intravenous iron replacement is efficacious and safe to treat iron deficiency anemia after VB in patients with cirrhosis.

3.
Small ; : e2310431, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441366

RESUMEN

Innovative advances in the exploitation of effective electrocatalytic materials for the reduction of nitrogen (N2 ) to ammonia (NH3 ) are highly required for the sustainable production of fertilizers and zero-carbon emission fuel. In order to achieve zero-carbon footprints and renewable NH3 production, electrochemical N2 reduction reaction (NRR) provides a favorable energy-saving alternative but it requires more active, efficient, and selective catalysts. In current work, sulfur vacancy (Sv)-rich NiCo2 S4 @MnO2 heterostructures are efficaciously fabricated via a facile hydrothermal approach followed by heat treatment. The urchin-like Sv-NiCo2 S4 @MnO2 heterostructures serve as cathodes, which demonstrate an optimal NH3 yield of 57.31 µg h-1  mgcat -1 and Faradaic efficiency of 20.55% at -0.2 V versus reversible hydrogen electrode (RHE) in basic electrolyte owing to the synergistic interactions between Sv-NiCo2 S4 and MnO2 . Density functional theory (DFT) simulation further verifies that Co-sites of urchin-like Sv-NiCo2 S4 @MnO2 heterostructures are beneficial to lowering the energy threshold for N2 adsorption and successive protonation. Distinctive micro/nano-architectures exhibit high NRR electrocatalytic activities that might motivate researchers to explore and concentrate on the development of heterostructures for ambient electrocatalytic NH3 generation.

4.
Small ; : e2310082, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470193

RESUMEN

Electrochemical conversion of nitrate, a prevalent water pollutant, to ammonia (NH3 ) is a delocalized and green path for NH3 production. Despite the existence of different nitrate reduction pathways, selectively directing the reaction pathway on the road to NH3 is now hindered by the absence of efficient catalysts. Single-atom catalysts (SACs) are extensively investigated in a wide range of catalytic processes. However, their application in electrocatalytic nitrate reduction reaction (NO3 - RR) to NH3 is infrequent, mostly due to their pronounced inclination toward hydrogen evolution reaction (HER). Here, Ni single atoms on the electrochemically active carrier boron, nitrogen doped-graphene (BNG) matrix to modulate the atomic coordination structure through a boron-spanning strategy to enhance the performance of NO3 - RR is designed. Density functional theory (DFT) study proposes that BNG supports with ionic characteristics, offer a surplus electric field effect as compared to N-doped graphene, which can ease the nitrate adsorption. Consistent with the theoretical studies, the as-obtained NiSA@BNG shows higher catalytic activity with a maximal NH3 yield rate of 168 µg h-1  cm-2 along with Faradaic efficiency of 95% and promising electrochemical stability. This study reveals novel ways to rationally fabricate SACs' atomic coordination structure with tunable electronic properties to enhance electrocatalytic performance.

5.
ACS Appl Mater Interfaces ; 16(10): 13114-13131, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427459

RESUMEN

Extensive utilization in various settings poses extra requirements of coatings beyond just anticorrosion properties. Herein, 8-hydroxyquinoline (8-HQ) intercalated CaAl-based layered double hydroxide (CaAl-8HQ-LDH) was loaded on reduced GO (rGO) through a one-pot hydrothermal reaction, which was employed as the nanofiller endowing the epoxy (EP/CaAl-8HQ LDH@rGO) with excellent flame-retardancy while ensuring efficient protection for mild steel. Results of electrochemical impedance spectroscopy (EIS) demonstrated the durability of the EP/CaAl-8HQ LDH@rGO-coated specimen, with the impedance at the lowest frequency (|Z|0.01Hz) maintained as 1.84 × 1010 Ω cm2 after 120 days of immersion in a 3.5 wt % NaCl solution. Even for the scratched EP/CaAl-8HQ LDH@rGO system, only a slight decline in |Z|0.01Hz was observed during 180 h of exposure to the NaCl solution, indicating a self-healing feature supported by salt spray tests. UL-94 burning tests revealed the V-0 rating for EP/CaAl-8HQ LDH@rGO with improved thermostability. Strong physical barrier from two-dimensional rGO and the release of 8-HQ from LDH interlayers accounted for the anticorrosive and self-healing properties. However, O2-concentration dilution and charring-layer promotion governed the flame-retardant behavior of the nanocomposite coating. The intercomponent synergy of nanofillers achieved in this work may provide a useful reference for designing multifunctional coatings.

6.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319026

RESUMEN

The way therapeutic compounds interact with serum protein provides valuable information on their pharmacokinetics, toxicity, effectiveness, and even their structural-related information. Isochroman (IC) is a phytochemical compound obtained from the leaves of Olea europea plant. The derivatives of IC have various pharmacological properties including antidepressants, antihistamines, antiinflammation, anticonvulsants, appetite depressants, etc. The binding of small molecules to bovine serum albumin (BSA) is useful to ensure their efficacy. Thus, in this study, we have found out the binding mode of IC with BSA using several spectroscopic and in silico studies. UV and fluorescence spectroscopy suggested the complex formation between IC and BSA with a binding constant of 103 M-1. IC resulted in fluorescence quenching in BSA through static mechanism. The microenvironmental and conformational changes in BSA were confirmed using synchronous and three-dimensional studies. Site marker experiment revealed the IC binding in site-III of BSA. The influence of vitamins, metals and ß-cyclodextrin (ß-CD) on binding constant of IC-BSA complex was also examined. Circular dichroism spectra showed that α-helical of BSA decreased upon interaction with IC. Computational and experimental results were complimentary with one another and assisted in determining the binding sites, nature of bonds and amino acids included in the IC-BSA complex formation.Communicated by Ramaswamy H. Sarma.

7.
J Biomol Struct Dyn ; 42(3): 1544-1558, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37194426

RESUMEN

Cancer is a multifactorial disease that can cause morbidity and mortality in humans. An altered gene expression in cancer leads to a change in the overall activity of the human cell. Overexpression of cancer protein may give a piece of wide information about the specific type of tumor. Sphingosine kinase-1 (SK-1) is a metabolic enzyme that is mainly overexpressed in several types of cancer and other inflammatory diseases. Similarly, pyruvate kinase-M2 (PK-M2) is an important oncogenic ATP-producing glycolytic enzyme that is upregulated in most cancer cells. The phytocompound of medicinal plants such as Nigella sativa contains a variety of micronutrients that inhibit the proliferation and activity of tumor cells. In this study, the role of phytocompounds in combating cancer was studied against the model kinase proteins, that is, PK-M2 and SK-1. In silico tool like the PASS-Way2Drug server was used to predict the anticancer properties of phytocompounds. Moreover, the CLC-Pred web server provided the cytotoxicity prediction of chemical compounds against several human cancer cell lines. The pharmacokinetics and toxicity profiles were predicted by the SwissADME and pkCSM software. The binding energies were obtained by molecular docking to confirm the intermolecular interaction of selected phytocompounds with proteins. Consequently, molecular dynamics (MD) simulation confirmed the stability, conformational changes, and dynamic behavior of the kinase proteins complexed with the lead phytocompounds, that is, epicatechin, apigenin, and kaempferol.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias , Nigella sativa , Fosfotransferasas (Aceptor de Grupo Alcohol) , Humanos , Detección Precoz del Cáncer , Piruvato Quinasa , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico
8.
ACS Nano ; 17(23): 23965-23976, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37975807

RESUMEN

Utilizing nanoseeds guiding homogeneous deposition of lithium is an effective strategy to inhibit disorderly growth of lithium, where silicon oxide has been attracting attention as a transform seed. However, the research on silicon-oxide-based seeds has concentrated more on utilizing their lithiophilicity but less on their Si-O structures, which could result in different failure mechanisms. In this study, various Si-O structures of silicon oxycarbide carbon nanofibers are prepared by adjusting the content of octa(aminopropylsilsesquioxane). According to XANES and experimental observations, the C-rich SiOC has an active Si-O-C structure but generates a larger volume variation during lithiation, while in the O-rich phase, the silica-oxygen tetrahedral structure can contribute to alleviate the volume expansion but has poor electrochemical activity. SiOC, which is dominated by SiO3C, has a suitable Si-O and silica-oxygen tetrahedral-structure distribution, which balances the electrochemical activity and volume expansion. This allows the host to demonstrate an excellent lifespan over 3740 h with a tiny voltage hysteresis (22 mV) at 2 mA cm-2, and it retains a favorable capacity of 97 mA h g-1 after 630 cycles with a high Coulombic efficiency of 99.7% in full cells. This study experiences the influence of various Si-O structures on lithium metal anodes.

9.
J Biomol Struct Dyn ; : 1-14, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37850451

RESUMEN

Nanoformulations (NFs) can be used as a novel drug delivery system to treat all cancer types. One of the major drawbacks of conventional anticancer drugs is that they have poor specificity and higher toxicity towards normal cells. 5-fluorouracil (5-FU) is a well-studied anticancer drug that has a significant role in various cancers, specifically colorectal cancer therapy. This study was performed to determine the functional groups, particle size, surface charge, heterogeneity, and stability of the NF. The NFs of 5-FU were prepared through the ultrasonication technique by increasing the surfactant (Tween-80) concentrations. Among all three NFs, nanoformulated 5-FU (n5-FU) showed the most effective particle size (10.72 nm) with a zeta potential of (-4.57 mV). The cytotoxicity and apoptosis profiles confirmed that n5-FU enhanced the anticancer effect of the pure drug in HCT-116 cells, as evident from MTT assay, fluorescence microscopy, and FACS analysis. In HCT-116 cells, the IC50 values of pure and n5-FU were obtained as 41.3 µM and 18.8 µM, respectively, indicating that n5-FU was more effective against the cancer cell line. The cellular uptake study was performed to check the intake of NF in cancer cells. However, the microtubule-affinity regulating kinase-4 (MARK-4), a cancer-target protein, was purified to study the inhibition and interaction studies. The inhibition assay confirmed the inhibitory potential of 5-FU against MARK-4 protein. the multi-spectroscopic, molecular docking and MD simulation studies were performed to analyse the conformational changes, binding studies, intermolecular interactions, and stability of MARK-4 protein upon binding 5-FU. This demonstrates that NF can enhance the effectiveness of anticancer drugs.Communicated by Ramaswamy H. Sarma.

10.
Molecules ; 28(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37513307

RESUMEN

The goal of an antiviral agent research is to find an antiviral drug that reduces viral growth without harming healthy cells. Transformations of the virus, new viral strain developments, the resistance of viral pathogens, and side effects are the current challenges in terms of discovering antiviral drugs. The time has come and it is now essential to discover a natural antiviral agent that has the potential to destroy viruses without causing resistance or other unintended side effects. The pharmacological potency of thymoquinone (TQ) against different communicable and non-communicable diseases has been proven by various studies, and TQ is considered to be a safe antiviral substitute. Adjunctive immunomodulatory effects in addition to the antiviral potency of TQ makes it a major compound against viral infection through modulating the production of nitric oxide and reactive oxygen species, decreasing the cytokine storm, and inhibiting endothelial dysfunction. Nevertheless, TQ's low oral bioavailability, short half-life, poor water solubility, and conventional formulation are barriers to achieving its optimal pharmacologic benefits. Nano-formulation proposes numerous ways to overcome these obstacles through a small particle size, a big surface area, and a variety of surface modifications. Nano-based pharmaceutical innovations to combat viral infections using TQ are a promising approach to treating surmounting viral infections.


Asunto(s)
Antivirales , Benzoquinonas , Antivirales/farmacología , Benzoquinonas/farmacología , Solubilidad , Tamaño de la Partícula
11.
Small ; 19(41): e2302388, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37312396

RESUMEN

A promising anode material for Li-ion batteries, silicon (Si) suffers from volume expansion-induced pulverization and solid electrolyte interface (SEI) instability. Microscale Si with high tap density and high initial Coulombic efficiency (ICE) has become a more anticipated choice, but it will exacerbate the above issues. In this work, the polymer polyhedral oligomeric silsesquioxane-lithium bis (allylmalonato) borate (PSLB) is constructed by in situ chelation on microscale Si surfaces via click chemistry. This polymerized nanolayer has an "organic/inorganic hybrid flexible cross-linking" structure that can accommodate the volume change of Si. Under the stable framework formed by PSLB, a large number of oxide anions on the chain segment preferentially adsorb LiPF6 and further induce the integration of inorganic-rich, dense SEI, which improves the mechanical stability of SEI and provides accelerated kinetics for Li+ transfer. Therefore, the Si4@PSLB anode exhibits significantly enhanced long-cycle performance. After 300 cycles at 1 A g-1 , it can still provide a specific capacity of 1083 mAh g-1 . Cathode-coupled with LiNi0.9 Co0.05 Mn0.05 O2 (NCM90) in the full cell retains 80.8% of its capacity after 150 cycles at 0.5 C.

12.
J Family Med Prim Care ; 12(4): 679-685, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37312778

RESUMEN

Background: The government of Saudi Arabia implemented a law to enforce the law and regulations prohibiting the dispensing of antibiotics without a prescription, and studies have been conducted to assess the impact of such a law in Saudi Arabia. However, the extent to which law enforcement has changed the perceptions and attitudes of health care professionals, mainly physicians, toward antibiotic resistance is unknown in Saudi Arabia. Material and Methods: A cross-sectional study was conducted in Riyad, Saudi Arabia, on 378 physicians. These physicians were mainly working in primary care centers. An online questionnaire was sent to the physicians, and it consisted of 35 items and was divided into four sections: 6 items were on sociodemographic characteristics of participants; 13 items were on the knowledge of physicians about antibiotic resistance; 8 items were on the attitude the physicians toward enforcement law, and the final 8 items were on the attitude the patients toward enforcement law in an outpatient setting. Results: Around 90% of the physicians acknowledged that physicians should stop prescribing antibiotics without indication. About 29.1 % of the physicians agreed, and 56.3% showed strong agreement that law enforcement is for the patient's benefit. Similarly, 33.6% agreed, and 50.8% strongly agreed that law enforcement limits the resistance of bacteria. Around 24.3% of the patients disagreed, and 23% strongly disagreed that law enforcement does not affect anything. Around one-third of the physicians (34.4%) agreed, and 23.5% strongly agreed that the new regulation of law enforcement of antibiotic prescription increases public awareness regarding the misuse of antibiotics. Conclusion: It seems that law enforcement has impacted the knowledge and attitude of physicians as they agree with law enforcement and its associated benefits for patients. They also acknowledged that law enforcement could limit the resistance to bacteria. However, not all physicians agree that law enforcement has an effect on anything, and new regulation of antibiotic prescription law increases public awareness regarding the misuse of antibiotics.

13.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36903746

RESUMEN

Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.

14.
Pancreatology ; 23(2): 151-157, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36610873

RESUMEN

INTRODUCTION: Quantitative fecal fat estimation is the gold standard test to diagnose steatorrhea (fecal fat >7 g/day) in chronic pancreatitis (CP), but cumbersome and inconvenient. So, fecal elastase-1 (FE) is proposed as a good alternative but the data on the diagnostic utility of FE to diagnose steatorrhea is variable. METHODS: This retrospective study included adult CP patients evaluated with both 24-h fecal-fat and FE tests within a 3-month period. The objective was to evaluate the diagnostic performance of FE to diagnose steatorrhea and to evaluate the FE progression over 9-month period. RESULTS: Among the 147 included patients, the frequency of steatorrhea (fecal fat >7 g/day) was 34%. The sensitivity, specificity, and negative likelihood ratio (LR) of FE was 90%, 28.9% and 0.35 at cut-off of <100 µg/g stool to diagnose steatorrhea; and 96%, 11.3% and 0.35 at cut-off of <200 µg/g stool, respectively. The optimal cut-off of FE was <20 on receiver operating characteristic curve (sensitivity 66%; specificity 69%; positive LR 2.14). There was no statistically significant variation in FE levels over 9 months interval among a hundred patients. CONCLUSION: Compared to FE ≥ 200 µg/g stool, FE ≥ 100 can used to exclude steatorrhea (better specificity and negative LR). FE < 20 alone cannot replace fecal fat estimation to confirm steatorrhea but to be interpreted with clinical features. Repeat FE testing for exocrine insufficiency progression can be done at least a year later.


Asunto(s)
Insuficiencia Pancreática Exocrina , Elastasa Pancreática , Pancreatitis Crónica , Adulto , Humanos , Insuficiencia Pancreática Exocrina/diagnóstico , Heces , Elastasa Pancreática/química , Pancreatitis Crónica/complicaciones , Estudios Retrospectivos , Esteatorrea/diagnóstico
15.
J Biomol Struct Dyn ; 41(18): 8795-8809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36281697

RESUMEN

A wide range of therapeutic molecules uses deoxyribonucleic acid (DNA) as an intracellular target. The interaction of small molecules to DNA is a key feature in pharmacology and plays a vital role in the development of novel and more efficient drugs with increased selective activity and enhanced therapeutic effectiveness. Isochroman (IC) is a constituent of Olea europea plant, which has been shown to exhibit several beneficial pharmacological activities. At present, its interaction studies using calf thymus DNA (ct-DNA) have not been explained. A set of multi-spectroscopic techniques has been performed to determine the interaction mechanism of isochroman with ct-DNA. Absorption spectra and quenching in fluorescence studies show that isochroman and ct-DNA form a complex. The static mode of quenching was determined by the Stern-Volmer plot. The value of binding constant, Kb = 4.0 × 103 M-1 revealed moderate type of binding. Effects of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and ionic strength were studied to examine the isochroman binding to ct-DNA. Potassium iodide (KI) quenching effects and competitive binding studies clearly showed that isochroman binds in the minor groove of ct-DNA. Circular dichroic and DNA melting experiments also confirmed these results. The experimental outputs were further corroborated via in silico computational modelling studies. Lipinski's rule of 5 and SwissADME showed drug-likeness and oral bioavailability scores. Protox ІІ online software predicts oral and organ toxicity.Communicated by Ramaswamy H. Sarma.

16.
J Biomol Struct Dyn ; 41(2): 538-549, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34856883

RESUMEN

H2 receptor antagonists are the medication given for treating stomach ulcers, but lately, reports have shown their role in healing several malignant ulcers. The present work entails the interaction of H2 blocker nizatidine with calf thymus (ct)-DNA for determining the binding mode and energetics of the interaction. Multi-spectroscopic, calorimetric, viscometric and bioinformatic analysis revealed that nizatidine interacted with ct-DNA via groove-binding mode and is characterised by exothermic reaction. Moreover, assessment of genotoxic potential of nizatidine in vitro was carried out in peripheral human lymphocytes by alkaline comet assay. DNA damage occurred at high concentrations of nizatidine. Genotoxicity of nizatidine was also evaluated in vivo by assessing cytogenetic biomarkers viz. micronuclei formation and chromosomal aberration test. Nizatidine was able to induce micronuclei formation and chromosomal damage at high dose. Additionally, cytotoxic activity of nizatidine was determined in cancer cell lines, namely HeLa and HCT-116 and compared with the normal human cell line HEK-293 employing MTT assay. It was observed that nizatidine was more toxic towards HeLa and HCT-116 than HEK-293. Cell morphology analysis by compound inverted microscopy further strengthens the finding obtained through MTT assay.


Asunto(s)
Daño del ADN , Nizatidina , Humanos , Células HEK293 , Ensayo Cometa , ADN
17.
Materials (Basel) ; 15(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35329481

RESUMEN

In this study, dense anticorrosion magnesium-aluminum layered double hydroxide (MgAl-LDH) films were prepared for the first time by introducing a cationic surfactant tetradecyltrimethyl ammonium bromide (TTAB) in the process of in situ hydrothermal synthesis of Mg-Al LDH films on an AZ31 magnesium alloy. Results of XRD, FTIR, and SEM confirmed that TTAB forms the MgAl-LDH-TTAB, although TTAB cannot enter into LDH layers, and MgAl-LDH-TTAB powders are much smaller and more homogenous than MgAl-CO32--LDH powders. Results of SEM, EDS, mapping, and XPS confirmed that TTAB forms the MgAl-LDH-TTAB films and endows LDH films with denser structure, which provides films with better shielding efficiency. Results of potentiodynamic polarization curves (PDP) and electrochemical impedance spectroscopy (EIS) confirmed that MgAl-LDH-TTABx g films have better corrosion resistance than an MgAl-CO32--LDH film. The corrosion current density (icorr) of the MgAl-LDH-TTAB0.35 g film in 3.5 wt.% NaCl solution was reduced to 1.09 × 10-8 A.cm-2 and the |Z|f = 0.05 Hz value was increased to 4.48 × 105 Ω·cm2. Moreover, the increasing concentration of TTAB in MgAl-LDH-TTABx g (x = 0.025, 0.05, 0.1, 0.2 and 0.35) provided denser outer layer LDH films and thereby increased the corrosion resistance of the AZ31 Mg alloy. Additionally, the |Z|f = 0.05 Hz values of the MgAl-LDH-TTAB0.35 g film still remained at 105 Ω·cm2 after being immersed in 3.5 wt.% NaCl solution for 168 h, implying the good long-term corrosion resistance of MgAl-LDH-TTABx g films. Therefore, introducing cationic surfactant in the process of in situ hydrothermal synthesis can be seen as a novel approach to creating efficient anticorrosion LDH films for Mg alloys.

18.
J Biomol Struct Dyn ; 40(3): 1216-1229, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32954978

RESUMEN

Memantine belongs to the class of cognition enhancers that functions as NMDA receptor antagonist, used to treat Alzheimer's disease. The interaction of memantine with DNA was not investigated. In the present study, the interaction of memantine with ct-DNA, as well as its cytotoxicity on cancer cells, was evaluated. UV-visible spectroscopy, steady-state fluorescence spectroscopic studies revealed the interaction between memantine and ct-DNA. The quenching studies, chemical denaturation, (CD), and DNA melting studies showed the groove binding mode of memantine with ct-DNA. The thermodynamic parameters revealed that the interaction between memantine and ct-DNA is enthalpically driven, and the stabilizing forces involved were hydrogen bonding and van der Waals interaction. The groove-binding was also observed by molecular docking studies, which corroborated the findings of spectroscopic investigations. Density function theory calculations confirmed the existence of electron donor and recipient groups. The stability of memantine and DNA interaction, as well as the critical residues involved in the interaction, was identified by molecular dynamics simulations. Memantine showed cytotoxicity towards the cancer cells as compared to normal cells, as observed by MTT assay. Inverted compound microscopy analysis of memantine treated cancer cell lines further confirmed the results obtained by MTT assay.Communicated by Ramaswamy H. Sarma.


Asunto(s)
ADN , Memantina , Línea Celular , ADN/química , Memantina/farmacología , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia , Termodinámica
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120391, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34571375

RESUMEN

Scopolamine is used to treat various CNS disorder like urinary incontinence, motion sickness, spasmic movements. Despite its pharmaceutical properties, its interaction with DNA is not yet reported. In this article, the interaction between scopolamine and ct-DNA is reported using a combination of biophysical techniques. UV-visible and steady-state fluorescence spectroscopy were used to study interaction and complex formation. Competitive displacement assays and potassium iodide quenching confirmed the mode of binding between scopolamine and DNA. Structural changes induced in the ct-DNA in the presence of scopolamine were evaluated by CD spectroscopy. The plasmid nicking and NBT assay confirmed the genotoxic effect of scopolamine. In-silico study by molecular docking and molecular dynamics simulation revealed the mode of interaction, major stabilizing forces as well as the nucleotide sequences to which the scopolamine binds.


Asunto(s)
ADN , Escopolamina , Dicroismo Circular , ADN/genética , Daño del ADN , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Escopolamina/toxicidad , Espectrometría de Fluorescencia , Termodinámica
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119952, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34052761

RESUMEN

ß-resorcylic acid (BR) is a phytochemical which is widely used in the food industry as a flavouring agent and preservative. It has also been found to exhibit antibacterial action against several types of food-borne bacteria. DNA is the main molecular target for many small molecules of therapeutic importance. Hence, the interest is rapidly growing among the researchers to elucidate the interaction between small molecules and DNA. Thus, paving the way to design novel DNA-specific drugs. In this study, an attempt was made to examine the mechanism of binding of BR with calf thymus DNA (ctDNA) with the help of various experiments based on spectroscopy and in silico studies. The spectroscopic studies like UV absorption and fluorescence affirmed the complex formation between BR and ctDNA. The observed binding constant was in the order of 103 M-1 which is indicative of the groove binding mechanism. These findings were further verified by dye-displacement assay, potassium iodide quenching, urea denaturation assay, the study of the effect of ssDNA, circular dichroism and DNA thermal denaturing studies. Different temperature-based fluorescence and isothermal titration calorimetry (ITC) experiments were employed to evaluate thermodynamic parameters. The analysis of thermodynamic parameters supports the enthalpically driven, exothermic and spontaneous nature of the reaction between BR and ctDNA. The forces involved in the binding process were mainly found to be hydrogen bonding, van der Waals and hydrophobic interactions. The results obtained from the molecular docking and molecular dynamics (MD) simulation were consistent with the in vitro experiments, which support the groove binding mode of BR with ctDNA.


Asunto(s)
Biología Computacional , ADN , Dicroismo Circular , Hidroxibenzoatos , Simulación del Acoplamiento Molecular , Espectrometría de Fluorescencia , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...